Demonstration of Low Power Stream Processing Using a Variable Pipelined CGRA
Takuya Kojima, Naoki Ando, Yusuke Matsushita, and Hideharu Amano Keio University

Introduction
CGRAs (Coarse-Grained Reconfigurable Architectures) are expected to be used for IoT devices and edge computing due to their high energy efficiency. VPCMA (Variable Pipelined Cool Mega Array) is a low power CGRA which we previously proposed in [1]. CC-SOTB2 is a real chip implementation of the VPCMA using Renesas 65-nm SOTB technology [2]. In this demonstration, we will show the low power consumption of the CC-SOTB2 while performing a real image processing with a tiny solar cell battery.

Architecture Overview

VPCMA (Variable Pipelined Cool Mega Array)[1]

- PE (Processing Element)
 - Composed of
 1. Simple ALU
 2. Switching Element
 3. No Register file
 4. No need of clock signal
- PE Array
 - 12 cols x 8 rows PEs
 - 7 configurable pipeline regs. (Latch mode/Bypass mode)
- Variable Pipeline
 - Trade-off b/w performance & power consumption
- Micro-controller
 - Controls data transfer b/w data memory & PE array
- External host processor
 - Uses common data bus for data transfer, reconfiguration, and other controls

A Real Chip Implementation: CC-SOTB2

- A prototype chip of VPCMA: CC-SOTB2
 - Fabricated with Renesas SOTB technology
 - 3mm x 6mm die
- About SOTB technology
 - 65 nm process
 - Good for body bias control
 - Trade-off b/w power & transistor performance
- Five body bias domains in CC-SOTB2
 - PE array’s domains vs. micro-controller’s domain
 - Adjust the balance of performance b/w PE array & micro-controller
 - Four divided PE array’s domains
 - Boost only bottleneck PEs & slow down other PEs

System Overview

Programming and Computing with a Host CPU

- Application Development Flow
 - Program (C Code)
 - C Compiler (clang)
 - LLVM IR
 - Extract Loop Kernels
 - Data Flow
 - Loop Kernels
 - GA-based Mapping Optimizer
 - Mapping Optimization[2]
 - Mapping Data-Flow-Graph in the loop to PE Array
 - Genetic-Algorithm-based Optimization tool
 - Full automated flow is under development
- Computation with Zynq FPGA
 - Zynq-PL (FPGA)
 - Zynq-PS
 - Linux OS
 - API for the Linux OS

Demonstration Environment

- Motherboard for experiment & demo
 - Connects CC-SOTB2 with Zynq FPGA
 - Power supply boards are available
 - Voltage control by Zynq
 - In this demonstration, a tiny solar cell battery
 - Large internal resistance
 - Voltage is kept only for extremely low power systems

Results of Image Processing

- In the best case (sf),
 - About 3 mW peak power
 - 80 PEs utilized
 - 2.4 GOPS / 3 mW
 - Up to 30MHz, the real chip can work stably with 0.55 V
- Gray Scaling of RGB image

Reference: