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Coarse-grained reconfigurable architectures

n Coarse-Grained Reconfigurable Architecture (CGRA)
n Composed of an array of Processing Elements (PEs)
n Providing a word-level reconfigurability (e.g., 32-bit)

n Smaller energy-overhead than FPGAs (bit-level)

n Generally used as an accelerator
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[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications." 
ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.



Purpose & Proposal
n Trend in CGRA research: design space exploration framework

nHighly customizability
n Possibilities of domain-specific architecture
n Recent work: CGRA-ME [3], OpenCGRA [4], RIKEN CGRA [5]

DSAGEN [6] (ISCA 2020), SNAFU [7] (ISCA 2021)
n Challenge

nNo general-purpose & architecture-independent compiler frontend for CGRAs
nNeeds of abstracting hardware layer for software programmers

n Our proposal
nA compiler framework enabling OpenMP offloading to CGRAs
nA case study: implementation for RIKEN CGRA
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Wide Variety of Design Choices
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n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows



Wide Variety of Design Choices 
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n Characteristics of CGRA Design
ØReconfiguration style

nTime-Multiplexing manner
nSpatial one

nPE array size
nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows



Wide Variety of Design Choices 

Distribution of the PE array size [8]
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n Characteristics of CGRA Design
nReconfiguration style
ØPE array size

nRanges 10-104 

nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows
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Wide Variety of Design Choices

n Characteristics of CGRA Design
nReconfiguration style
nPE array size
ØInterconnection topology

nMesh
nMeshplus
nTorus, etc

nOperational capabilities in PE
nAbility to handle control flows



Wide Variety of Design Choices
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n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
ØOperational capabilities in PE

nBit-width
nFloating point
nSIMD
nCustom instruction (e.g., ReLU, sigmoid for ML) 

nAbility to handle control flows



Wide Variety of Design Choices
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n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
nOperational capabilities in PE
ØAbility to handle control flows

nConditionals are supported or not ?
nLoop-carried dependence is allowed or not ?



A case of CGRA: RIKEN CGRA [5]

n Design template for design space 
exploration 
n Implemented with SystemVerilog

n Two types of tiles
1. LS (Load/Store)
n Data access according to loop control 

info.
2. PE
n Computation

n Reconfiguration style: Spatial
n FIFO buffers allow operands to arrive 

at different times
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Limitations of Existing Compilers
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CGRA vs FPGA in compilation flow
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Existing compilers for CGRAs

Methods Frontend
Targets

Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) TM
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM)

PACT XPP-VC [11] C PACT XPP TM

SambaFlowTM [12] PyTorch, 
TensorFlow, etc

SambaNova
RDA SP

BlackDiamond [13] C-like DSL Parameterized TM/SP
CCF [14] C (pragma) ADRES[16]-like TM

Kim, Hee-Seok, et al [15] OpenCL SRP TM
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized TM/SP

OpenCGRA [4] C, Python DSL Parameterized TM
DSAGEN [6] C (pragma) Parameterized SP

Commercial
products

TM: Time-Multiplexing,  SP: Spatial
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Design space exploration
Fair comparison between various types of CGRAs

Reuse of source codes
Minimizing efforts to modify the codes

Easy to compare other architectures
Comparing to GPU, many-core CPU with  the same kernel 



Our Proposal: CGRA OpenMP
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Target directive 

n Accelerator offloading features
n Added since OpenMP 4.0
n Similar concept to OpenACC
n Mainly supporting GPU offloading
n Explicit data transfer between hosts and device (map clause)

#pragma omp target map(to: v1, v2) map(from: p)
#pragma omp parallel for private(i) 
for (i = 0; i < N; i++) {

p[i] = v1[i] * v2[i];
}

Code snippet with target directive [17]
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Implementation based on LLVM

n LLVM: An open-source compiler framework
n LLVM-IR: target-independent intermediate representation
n Common optimization and analysis algorithms (Pass)
nOfficial sub-projects

nC frontend Clang, Fortran frontend Flang, OpenMP, etc
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Compilation flow in CGRA OpenMP

n Compiler-driver can automate 
the compilation

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 19



Compilation flow in CGRA OpenMP 
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n clang-offload-bundler
n A utility tool for heterogeneous single source 

programming languages.
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n Compiler-driver can automate 
the compilation



Compilation flow in CGRA OpenMP 
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n Compiler-driver can automate 
the compilation



Compilation flow in CGRA OpenMP 
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n Compiler-driver can automate 
the compilation



Compilation flow in CGRA OpenMP 
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n Compiler-driver can automate 
the compilation



CGRA Model Description
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CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": [ "fexp", "fsin", "fcos” ],
"generic_instructions": [ "add", "sub", "mul", "udiv", "sdiv", 

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
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n Classification of CFGRAs
n Decoupled

n An execution model decoupling 
memory access and computation [6]



CGRA model description
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n Ability to memory access control
n Only affine access is allowd
n Up-to 3-nested loops
n i.e., 𝐶! + 𝐶"𝑣" + 𝐶#𝑣# + 𝐶$𝑣$
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n Ability to handle control flow
n In this example of the CGRA

n Both conditional and loop-
carried decencies are not 
supported



CGRA model description
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n What kind of instructions are supported in ALU
n custom_instructions: instructions not in LLVM-IR

n The Same function name should be used in codes
n generic_instructions: Corresponding LLVM IR instructions
n instruction_map: mapping LLVM IR instr. to ALU opcode 

n Some mapping conditions are available
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n What kind of instructions are supported in ALU
n custom_instructions: instructions not in LLVM-IR

n The Same function name should be used in codes
n generic_instructions: Corresponding LLVM IR instructions
n instruction_map: mapping LLVM IR instr. to ALU opcode 

n Some mapping conditions are available

function declaration in source codes for the custom instruction
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Flow of CGRAOmpPass
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n Verifies if the kernel can be executed on 
the target CGRA
n Compatibility of operations 
n Memory access pattern
n Loop structure, etc
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Flow of CGRAOmpPass
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n Extract the kernel as a DFG
n DFG-level optimization as plugin
n if-conversion (if predication is supported)
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Code exmaple: 3x3 convolution

n convolution-2d.c from PolyBench-ACC
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#pragma omp target parallel for private(i,j) map(to:A[:][0:]) map(from:B[:][0:])
for (i = 1; i < _PB_NI - 1; ++i)
{

for (j = 1; j < _PB_NJ - 1; ++j)
{

B[i][j] = 0.2f * A[i-1][j-1] + 0.5f * A[i-1][j] + -0.8f * A[i-1][j+1]
+ -0.3f * A[ i ][j-1] + 0.6f * A[ i ][j] + -0.9f * A[ i ][j+1]
+ 0.4f * A[i+1][j-1] + 0.7f * A[i+1][j] + 0.1f * A[i+1][j+1];

}
}

← Only this pragma is
inserted



Demonstration of the compiler driver
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DFG Optimization after extraction
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Generated DFG
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n Data dependencies in LLVM-IR cause unbalanced DFG

Computational node

Constant nodes

Mem. access nodes



DFG-level optimization: Tree-Height-Reduction

n An important optimization for LSI design and High-level synthesis [18]
nGraph transformation based on commutativity & associativity of operators

ne.g., addition (+), multiplication (*)
n This work integrates Huffman code-based algorithm [19] as a built-in pass
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+

+

LDA LDB

LDC

LDD

+

+

+

LDA LDB LDC LDD
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Applying Tree-Height-Reduction

n Easy to custom pass pipeline for DFG optimization
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DFG after optimization
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Computational node

Constant nodes

Mem. access nodes



DFG Pass Plugin
n Easy to create and enable your own custom pass in similar manner in 

LLVM
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↖Pass function

↖Call back function



Evaluation
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Experimental setup
n LLVM version 12.0.1
n CGRA design 

n RIKEN CGRA
n 8x10 array (8x8 PE tiles + 8+8LS tiles)

n Benchmark: 3x3 convolution
n Backend (mapping algorithm)

n GenMap[20] currently supports RIKEN CGRA
n Genetic algorithm-based mapping

https://github.com/hungalab/GenMap
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https://github.com/hungalab/GenMap


Mapping results

priority Total wire length Map area Latency diff.
naïve DFG area 40.38 40 (5 x 8) 6

latency balance 50.56 56 (7 x 8) 2
Optimized DFG 46.21 40 (5 x 8) 0

naïve DFG 5x8 mapping Optimized DFG 5x8 mapping
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Conclusion & Future work

n This work
n Proposes a CGRA compiler designated to handle the same source code 

regardless of the target architecture
nUses OpenMP offloading

n Future work
n To extend verification and analysis for other types of CGRAs
n To Implement runtime insertion
n To make it work together with CGRA simulators or FPGA overlays

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 45



References
[1] Hennessy, John L., and David A. Patterson. "A new golden age for computer architecture." Communications of 
the ACM 62.2 (2019): 48-60.
[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and 
applications." ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.
[3] Anderson, Jason, et al. "CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research." 2021 
IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2021.
[4] Tan, Cheng, et al. "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating 
CGRAs." 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE, 2020.
[5] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A template-based framework for exploring coarse-
grained reconfigurable architectures." 2020 IEEE 31st International Conference on Application-specific Systems, 
Architectures and Processors (ASAP). IEEE, 2020.
[6] Weng, Jian, et al. "Dsagen: Synthesizing programmable spatial accelerators." 2020 ACM/IEEE 47th Annual 
International Symposium on Computer Architecture (ISCA). IEEE, 2020.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 46



References 
[7] Gobieski, Graham, et al. "Snafu: an ultra-low-power, energy-minimal CGRA-generation framework and 
architecture." 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021.
[8] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A survey on coarse-grained reconfigurable architectures 
from a performance perspective." IEEE Access 8 (2020): 146719-146743.
[9] Renesas Electronics Corporation, “Dynamically Reconfigurable Processor (DRP) Technology Development | 
Renesas”, https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-
recognition/drp-development, access 2022.
[10] Chou, Yuan, et al. "Piperench implementation of the instruction path coprocessor." Proceedings of the 33rd 
annual ACM/IEEE international symposium on Microarchitecture. 2000.
[11] Cardoso, Joao MP, and Markus Weinhardt. "XPP-VC: AC compiler with temporal partitioning for the PACT-XPP 
architecture." International Conference on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 
2002.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 47

https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-recognition/drp-development


References 
[12] SambaNova, Accelerated Computing with a Reconfigurable Dataflow Architecture. https://sambanova.ai/wp-
content/uploads/2021/04/SambaNova_RDA_Whitepaper.pdf,  access 2022
[13] Tunbunheng, Vasutan, and Hideharu Amano. "Black-diamond: A retargetable compiler using graph with 
configuration bits for dynamically reconfigurable architectures." Proc. 14th Workshop on Synthesis and System 
Integration of Mixed Information Technologies (SASIMI). 2007.
[14] S. Dave and A. Shrivastava, “CCF: A CGRA compilation framework,” https://github.com/MPSLab-ASU/ccf,  
access 2022
[15] Kim, Hee-Seok, et al. "Design evaluation of opencl compiler framework for coarse-grained reconfigurable 
arrays." 2012 International Conference on Field-Programmable Technology. IEEE, 2012.
[16] Ohwada, Ayaka, Takuya Kojima, and Hideharu Amano. "MENTAI: A Fully Automated CGRA Application 
Development Environment that Supports Hardware/Software Co-design."
[17] OpenMP, ” OpenMP Application Programming Interface Examples”, 2016.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 48

https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_RDA_Whitepaper.pdf


References 
[18] D.L. Kuck, Structure of Computers and Computations, John Wiley & Sons, Inc., 1978.
[19] K.E. Coons, W. Hunt, B.A. Maher, D. Burger, and K.S. McKin- ley, Optimal huffman tree-height reduction for 
instruction-level parallelism, Computer Science Department, University of Texas at Austin, 2008.
[20] Kojima, Takuya, Nguyen Anh Vu Doan, and Hideharu Amano. "GenMap: A Genetic Algorithmic Approach for 
Optimizing Spatial Mapping of Coarse-Grained Reconfigurable Architectures." IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems 28.11 (2020): 2383-2396.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 49


