
An Architecture-Independent CGRA
Compiler enabling OpenMP Applications

Takuya Kojima†, Carlos Cesar Cortes Torres‡, Boma
Adhi‡, Yiyu Tan‡, Kentaro Sano‡

† The University of Tokyo, Japan
‡ RIKEN, Japan

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 2

Coarse-grained reconfigurable architectures

n Coarse-Grained Reconfigurable Architecture (CGRA)
n Composed of an array of Processing Elements (PEs)
n Providing a word-level reconfigurability (e.g., 32-bit)

n Smaller energy-overhead than FPGAs (bit-level)

n Generally used as an accelerator
Performance

En
er

gy
 Ef

fic
ien

cy ASIC

FPGA
CGRA

GPU
DSP

CPU

PE PE PE PE

Data from neighbors/Data memory

D
at

a
M

em
or

y

Register
file

ALU

SEL SEL

PE Array

PE PE PE PE

PE PE PE PE

PE PE PE PE

Output Register

Data to neighbors/Data memory

+ *

&

*

+

A data flow graph
as an application

Comparison with other architectures[2]

General structure of the CGRAs

mapping

[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications."
ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.

Purpose & Proposal
n Trend in CGRA research: design space exploration framework

nHighly customizability
n Possibilities of domain-specific architecture
n Recent work: CGRA-ME [3], OpenCGRA [4], RIKEN CGRA [5]

DSAGEN [6] (ISCA 2020), SNAFU [7] (ISCA 2021)
n Challenge

nNo general-purpose & architecture-independent compiler frontend for CGRAs
nNeeds of abstracting hardware layer for software programmers

n Our proposal
nA compiler framework enabling OpenMP offloading to CGRAs
nA case study: implementation for RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 3

Wide Variety of Design Choices

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 4

n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows

Wide Variety of Design Choices

A B

C D

E

A B

C D

E

Time
Cycle 0

Cycle 1

Cycle 2

A
B

C
D

E

E'

A''
B''

Spatial manner Time-Multiplexing manner

Data-Flow-Graph
(DFG)

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 5

n Characteristics of CGRA Design
ØReconfiguration style

nTime-Multiplexing manner
nSpatial one

nPE array size
nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows

Wide Variety of Design Choices

Distribution of the PE array size [8]

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 6

n Characteristics of CGRA Design
nReconfiguration style
ØPE array size

nRanges 10-104

nInterconnection topology
nOperational capabilities in PE
nAbility to handle control flows

1

10

100

1000

10000

100000

1995 2000 2005 2010 2015 2020

ASIC FPGA Overlay

Th
e

Nu
m

be
r

of
 P

Es

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE PE PE

mesh mesh-plus

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 7

Wide Variety of Design Choices

n Characteristics of CGRA Design
nReconfiguration style
nPE array size
ØInterconnection topology

nMesh
nMeshplus
nTorus, etc

nOperational capabilities in PE
nAbility to handle control flows

Wide Variety of Design Choices

Data from neighbors/Data memory

Register
file

ALU

SEL SEL

Output Register

Data to neighbors/Data memory

32bit? 64bit?
int? float? fixed?

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 8

n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
ØOperational capabilities in PE

nBit-width
nFloating point
nSIMD
nCustom instruction (e.g., ReLU, sigmoid for ML)

nAbility to handle control flows

Wide Variety of Design Choices

for (…) {
if (a > 0) {

x = b;
} else {

x = c;
}

}

PE PE PE

PE PE PE

PE PE PE

cmp

SEL

b c a 0

b c

SEL cmp

a

Loop containing
conditional parts

DFG with
Partial Predication

Partial predication on CGRAs

x

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 9

n Characteristics of CGRA Design
nReconfiguration style
nPE array size
nInterconnection topology
nOperational capabilities in PE
ØAbility to handle control flows

nConditionals are supported or not ?
nLoop-carried dependence is allowed or not ?

A case of CGRA: RIKEN CGRA [5]

n Design template for design space
exploration
n Implemented with SystemVerilog

n Two types of tiles
1. LS (Load/Store)
n Data access according to loop control

info.
2. PE
n Computation

n Reconfiguration style: Spatial
n FIFO buffers allow operands to arrive

at different times

LS

LS

LS

LSM
em

or
y

In
te

rfa
ce

M
em

or
y

In
te

rfa
ce

Tile Array
PELS

LS

LS

LS

PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

...

...

...

...

..
.

..
.

..
.

..
.

..
.

..
.

To/from
 m

em
ory

To/from
 neighbor P

E
 tiles

M
U

X

Configuration data

Address
Generator

Logic

LS tile
Store data

FIFO

FIFO

AddressLoop info.

Load data

D
ata from

 neighbor tiles

D
ata to neighbor tiles

IMM
FIFO

M
U

X

A
LU

IM
M

 S
E

L
IM

M
 S

E
L

M
U

X

Configuration data

PE tile
FIFO

FIFO

Overview of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 10

Limitations of Existing Compilers

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 11

CGRA vs FPGA in compilation flow

& / /
/

&

/ -

- /

+/-

/

-/ /

.

Gate level netlist

LUT level netlist

LB level netlist

C/C++
etc.

DFG extraction

Mapping
Place&Route(+Scheduling)

Sequential part
for CPU

Loop kernel

DFG

Configuration
data

For FPGAs For CGRAs

Coarse granularity mitigates
compilation complexity

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 12

Existing compilers for CGRAs

Methods Frontend
Targets

Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) TM
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM)

PACT XPP-VC [11] C PACT XPP TM

SambaFlowTM [12] PyTorch,
TensorFlow, etc

SambaNova
RDA SP

BlackDiamond [13] C-like DSL Parameterized TM/SP
CCF [14] C (pragma) ADRES[16]-like TM

Kim, Hee-Seok, et al [15] OpenCL SRP TM
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized TM/SP

OpenCGRA [4] C, Python DSL Parameterized TM
DSAGEN [6] C (pragma) Parameterized SP

Commercial
products

TM: Time-Multiplexing, SP: Spatial
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 13

Existing compilers for CGRAs

Methods Frontend
Targets

Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) TM
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM)

PACT XPP-VC [11] C PACT XPP TM

SambaFlowTM [12] PyTorch,
TensorFlow, etc

SambaNova
RDA SP

BlackDiamond [13] C-like DSL Parameterized TM/SP
CCF [14] C (pragma) ADRES[16]-like TM

Kim, Hee-Seok, et al [15] OpenCL SRP TM
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized TM/SP

OpenCGRA [4] C, Python DSL Parameterized TM
DSAGEN [6] C (pragma) Parameterized SP
This work OpenMP Parameterized TM/SP

Commercial
products

TM: Time-Multiplexing, SP: Spatial
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 14

Existing compilers for CGRAs

Methods Frontend
Targets

Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) TM
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM)

PACT XPP-VC [11] C PACT XPP TM

SambaFlowTM [12] PyTorch,
TensorFlow, etc

SambaNova
RDA SP

BlackDiamond [13] C-like DSL Parameterized TM/SP
CCF [14] C (pragma) ADRES[16]-like TM

Kim, Hee-Seok, et al [15] OpenCL SRP TM
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized TM/SP

OpenCGRA [4] C, Python DSL Parameterized TM
DSAGEN [6] C (pragma) Parameterized SP
This work OpenMP Parameterized TM/SP

Commercial
products

TM: Time-Multiplexing, SP: Spatial
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 15

Design space exploration
Fair comparison between various types of CGRAs

Reuse of source codes
Minimizing efforts to modify the codes

Easy to compare other architectures
Comparing to GPU, many-core CPU with the same kernel

Our Proposal: CGRA OpenMP

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 16

Target directive

n Accelerator offloading features
n Added since OpenMP 4.0
n Similar concept to OpenACC
n Mainly supporting GPU offloading
n Explicit data transfer between hosts and device (map clause)

#pragma omp target map(to: v1, v2) map(from: p)
#pragma omp parallel for private(i)
for (i = 0; i < N; i++) {

p[i] = v1[i] * v2[i];
}

Code snippet with target directive [17]

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 17

Implementation based on LLVM

n LLVM: An open-source compiler framework
n LLVM-IR: target-independent intermediate representation
n Common optimization and analysis algorithms (Pass)
nOfficial sub-projects

nC frontend Clang, Fortran frontend Flang, OpenMP, etc

C/C++
codes cl

an
g

LLVM
IR Pa

ss
 1

Pa
ss

 2

…

Pa
ss

 N Optimized
IR

Ba
ck

en
d

Pa
ss

Pass ManagerFortran
codes fla

ng

X86
asm

ARM
asm

RISC-V
asm

…

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 18

Compilation flow in CGRA OpenMP

n Compiler-driver can automate
the compilation

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 19

Compilation flow in CGRA OpenMP

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

(1)Dividing into host and
device (CGRA) codes

n clang-offload-bundler
n A utility tool for heterogeneous single source

programming languages.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 20

n Compiler-driver can automate
the compilation

Compilation flow in CGRA OpenMP

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

n CGRAOmpPass
n Code verification
n DFG extraction
n Runtime insertion

(2)

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 21

n Compiler-driver can automate
the compilation

Compilation flow in CGRA OpenMP

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

n Template for runtime routine
n Data transfer
n Configuration

(3) Generate
Executable for host

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 22

n Compiler-driver can automate
the compilation

Compilation flow in CGRA OpenMP

OpenMP
Code cl

an
g LLVM

IR

CGRA
LLVM

IR

Host
LLVM

IR

op
t

op
t

Un
bu

nd
le

CGRAOmp
Pass

Data
Flow

Graph

Control
IR

Bundle

CGRA
Model

Mapping

CGRA
Runtime Lib

Host
Object

linker

n Generated DFG independent
of mapping algorithm
n DOT format

(4) Mapping
(PnR)

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 23

n Compiler-driver can automate
the compilation

CGRA Model Description

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 24

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 25

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 26

n Classification of CFGRAs
n Decoupled

n An execution model decoupling
memory access and computation [6]

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 27

n Ability to memory access control
n Only affine access is allowd
n Up-to 3-nested loops
n i.e., 𝐶! + 𝐶"𝑣" + 𝐶#𝑣# + 𝐶$𝑣$

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 28

n Ability to handle control flow
n In this example of the CGRA

n Both conditional and loop-
carried decencies are not
supported

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 29

n What kind of instructions are supported in ALU
n custom_instructions: instructions not in LLVM-IR

n The Same function name should be used in codes
n generic_instructions: Corresponding LLVM IR instructions
n instruction_map: mapping LLVM IR instr. to ALU opcode

n Some mapping conditions are available

CGRA model description

n The model defines CGRA execution style, etc (JSON)
{
"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3

},
"conditional" : {
"allowed": false

},
"inter-loop-dependency": {
"allowed": false

},
"custom_instructions": ["fexp", "fsin", "fcos”],
"generic_instructions": ["add", "sub", "mul", "udiv", "sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”],
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},
{ "inst": "xor", "map": "xor"}

]
}

An example: the case of RIKEN CGRA
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 30

n What kind of instructions are supported in ALU
n custom_instructions: instructions not in LLVM-IR

n The Same function name should be used in codes
n generic_instructions: Corresponding LLVM IR instructions
n instruction_map: mapping LLVM IR instr. to ALU opcode

n Some mapping conditions are available

function declaration in source codes for the custom instruction

Flow of CGRAOmpPass

OpenMP
CGRA

target IR

Ve
rif

ic
at

io
n

Pa
ss

D
FG

Pa
ss

In
se

rt
 R

un
tim

e
Pa

ss

CGRAOmpPass

M
od

el
M

an
ag

er
Pa

ss

CGRA
Model
JSON

Loop Info.

DFG

Replaced
IR

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 31

Flow of CGRAOmpPass

OpenMP
CGRA

target IR

Ve
rif

ic
at

io
n

Pa
ss

D
FG

Pa
ss

In
se

rt
 R

un
tim

e
Pa

ss

CGRAOmpPass

M
od

el
M

an
ag

er
Pa

ss

CGRA
Model
JSON

Loop Info.

DFG

Replaced
IR

n Verifies if the kernel can be executed on
the target CGRA
n Compatibility of operations
n Memory access pattern
n Loop structure, etc

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 32

Flow of CGRAOmpPass

OpenMP
CGRA

target IR

Ve
rif

ic
at

io
n

Pa
ss

D
FG

Pa
ss

In
se

rt
 R

un
tim

e
Pa

ss

CGRAOmpPass

M
od

el
M

an
ag

er
Pa

ss

CGRA
Model
JSON

Loop Info.

DFG

Replaced
IR

n Extract the kernel as a DFG
n DFG-level optimization as plugin
n if-conversion (if predication is supported)

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 33

Code exmaple: 3x3 convolution

n convolution-2d.c from PolyBench-ACC

34The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

#pragma omp target parallel for private(i,j) map(to:A[:][0:]) map(from:B[:][0:])
for (i = 1; i < _PB_NI - 1; ++i)
{

for (j = 1; j < _PB_NJ - 1; ++j)
{

B[i][j] = 0.2f * A[i-1][j-1] + 0.5f * A[i-1][j] + -0.8f * A[i-1][j+1]
+ -0.3f * A[i][j-1] + 0.6f * A[i][j] + -0.9f * A[i][j+1]
+ 0.4f * A[i+1][j-1] + 0.7f * A[i+1][j] + 0.1f * A[i+1][j+1];

}
}

← Only this pragma is
inserted

Demonstration of the compiler driver

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 35

DFG Optimization after extraction

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 36

Generated DFG

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 37

n Data dependencies in LLVM-IR cause unbalanced DFG

Computational node

Constant nodes

Mem. access nodes

DFG-level optimization: Tree-Height-Reduction

n An important optimization for LSI design and High-level synthesis [18]
nGraph transformation based on commutativity & associativity of operators

ne.g., addition (+), multiplication (*)
n This work integrates Huffman code-based algorithm [19] as a built-in pass

+

+

+

LDA LDB

LDC

LDD

+

+

+

LDA LDB LDC LDD

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 38

Applying Tree-Height-Reduction

n Easy to custom pass pipeline for DFG optimization

39The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

DFG after optimization

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 40

Computational node

Constant nodes

Mem. access nodes

DFG Pass Plugin
n Easy to create and enable your own custom pass in similar manner in

LLVM

41The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

↖Pass function

↖Call back function

Evaluation

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 42

Experimental setup
n LLVM version 12.0.1
n CGRA design

n RIKEN CGRA
n 8x10 array (8x8 PE tiles + 8+8LS tiles)

n Benchmark: 3x3 convolution
n Backend (mapping algorithm)

n GenMap[20] currently supports RIKEN CGRA
n Genetic algorithm-based mapping

https://github.com/hungalab/GenMap

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 43

https://github.com/hungalab/GenMap

Mapping results

priority Total wire length Map area Latency diff.
naïve DFG area 40.38 40 (5 x 8) 6

latency balance 50.56 56 (7 x 8) 2
Optimized DFG 46.21 40 (5 x 8) 0

naïve DFG 5x8 mapping Optimized DFG 5x8 mapping
The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 44

OP

OP

OP

LD LD

OP
Shorter lat. 2

Longer lat. 3

Diff.: 3-2

Conclusion & Future work

n This work
n Proposes a CGRA compiler designated to handle the same source code

regardless of the target architecture
nUses OpenMP offloading

n Future work
n To extend verification and analysis for other types of CGRAs
n To Implement runtime insertion
n To make it work together with CGRA simulators or FPGA overlays

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 45

References
[1] Hennessy, John L., and David A. Patterson. "A new golden age for computer architecture." Communications of
the ACM 62.2 (2019): 48-60.
[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and
applications." ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.
[3] Anderson, Jason, et al. "CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research." 2021
IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2021.
[4] Tan, Cheng, et al. "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating
CGRAs." 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE, 2020.
[5] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A template-based framework for exploring coarse-
grained reconfigurable architectures." 2020 IEEE 31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2020.
[6] Weng, Jian, et al. "Dsagen: Synthesizing programmable spatial accelerators." 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2020.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 46

References
[7] Gobieski, Graham, et al. "Snafu: an ultra-low-power, energy-minimal CGRA-generation framework and
architecture." 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021.
[8] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A survey on coarse-grained reconfigurable architectures
from a performance perspective." IEEE Access 8 (2020): 146719-146743.
[9] Renesas Electronics Corporation, “Dynamically Reconfigurable Processor (DRP) Technology Development |
Renesas”, https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-
recognition/drp-development, access 2022.
[10] Chou, Yuan, et al. "Piperench implementation of the instruction path coprocessor." Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture. 2000.
[11] Cardoso, Joao MP, and Markus Weinhardt. "XPP-VC: AC compiler with temporal partitioning for the PACT-XPP
architecture." International Conference on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg,
2002.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 47

https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-recognition/drp-development

References
[12] SambaNova, Accelerated Computing with a Reconfigurable Dataflow Architecture. https://sambanova.ai/wp-
content/uploads/2021/04/SambaNova_RDA_Whitepaper.pdf, access 2022
[13] Tunbunheng, Vasutan, and Hideharu Amano. "Black-diamond: A retargetable compiler using graph with
configuration bits for dynamically reconfigurable architectures." Proc. 14th Workshop on Synthesis and System
Integration of Mixed Information Technologies (SASIMI). 2007.
[14] S. Dave and A. Shrivastava, “CCF: A CGRA compilation framework,” https://github.com/MPSLab-ASU/ccf,
access 2022
[15] Kim, Hee-Seok, et al. "Design evaluation of opencl compiler framework for coarse-grained reconfigurable
arrays." 2012 International Conference on Field-Programmable Technology. IEEE, 2012.
[16] Ohwada, Ayaka, Takuya Kojima, and Hideharu Amano. "MENTAI: A Fully Automated CGRA Application
Development Environment that Supports Hardware/Software Co-design."
[17] OpenMP, ” OpenMP Application Programming Interface Examples”, 2016.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 48

https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_RDA_Whitepaper.pdf

References
[18] D.L. Kuck, Structure of Computers and Computations, John Wiley & Sons, Inc., 1978.
[19] K.E. Coons, W. Hunt, B.A. Maher, D. Burger, and K.S. McKin- ley, Optimal huffman tree-height reduction for
instruction-level parallelism, Computer Science Department, University of Texas at Austin, 2008.
[20] Kojima, Takuya, Nguyen Anh Vu Doan, and Hideharu Amano. "GenMap: A Genetic Algorithmic Approach for
Optimizing Spatial Mapping of Coarse-Grained Reconfigurable Architectures." IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 28.11 (2020): 2383-2396.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 49

